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Department of Physics, Faculty of Sciences, Ankara University, 06100, Tandoğan, Ankara,
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Abstract
We present a calculation of the ground-state binding energy of an impurity
magnetopolaron confined in a three-dimensional (3D) parabolic quantum dot
potential, in the framework of a variational approach based on two successive
canonical transformations. First, we apply a displaced-oscillator type unitary
transformation to diagonalize the relevant Fröhlich Hamiltonian. Second, a
single-mode squeezed-state transformation is introduced to deal with bilinear
terms arising from the first transformation. Finally, the parameters of these
transformations together with the parameters included in the electronic trial
wavefunction are determined variationally to obtain the ground-state binding
energy of an impurity magnetopolaron confined in a 3D parabolic quantum
dot potential. Our approach has two advantages: first, the displaced-oscillator
transformation allows one to obtain results valid for whole range of electron–
phonon coupling strength since it is a special combination of Lee–Low–Pines
and Huybrechts (LLP–H) canonical transformations, and second, the later
transformation improves all-coupling results. It has been shown that the effects
of quadratic terms arising from the all-coupling approach are very important and
should be taken into account in studying the size-dependent physical properties
of nanostructured materials.

1. Introduction

With the use of advanced nanolithographic and epitaxial growth techniques [1], it is now
possible to manufacture nanoscaled quantum confined systems such as quasi-two-dimensional
(Q2D) quantum wells (QWs), quasi-one-dimensional (Q1D) quantum wires or quantum well
wires (QWWs) and quasi-zero-dimensional (Q0D) quantum dots (QDs) [2, 3], with very low
background impurity concentrations [4]. However, due to the fact that QDs are ultrasmall
structures as compared to QWs or QWWs, the inclusion of a single impurity can dramatically
affect the transport properties [4] as well as the electronic and optical properties of QDs in
contrast to QWs or QWWs. Thus, a detailed knowledge of impurity effects on these physical
properties is crucial in interpreting experimental findings such as emission and absorption
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spectra, and photoluminescence spectra, and also in designing new nanostructured electronic
and optoelectronic devices. Moreover, due to the reduction of the dimensionality of the
system from 3D to Q0D, it is a well-known fact that electron–phonon interactions have more
pronounced effects as compared to the bulk case [5]. Following the work of Erçelebi and
Tomak [6] and Degani and Hipólito [7] in QW systems, the effects of electron–phonon coupling
on impurity binding energies have been considered in various geometries such as in QWs [8],
QWWs [9], and in spherical [10–12],parabolic [13, 14] and cylindrical QDs [15, 16]. Polaronic
effects in QD systems with two [17] and N [18] electrons bound to a Coulomb impurity and
with a Coulomb interacting electron–hole pair [19] have also been studied.

Since the existence of an external magnetic field has nonnegligible effects on above
physical properties [1, 4] and provides both theoretical and experimental insight into these
physical properties in nanostructured materials, a lot of work has also been devoted to the
study of magnetic field effects in finite [20] and infinite [21] QWs, in parabolic [22, 23]
QWWs and in 2D parabolic [24–26] QDs. In a previous work [27], where the adiabatic
approach is employed, we have presented a comparative study of the effects of both quantum
confinement and magnetic field on the ground-state and first-excited-state energies of an
impurity magnetopolaron in a parabolic QDs, QWs and QWWs, and have concluded that
the binding energies of an impurity magnetopolaron increase with increasing both the degree
of spatial confinement and the magnetic field strength.

In this paper, a different unitary transformation scheme will be developed to diagonalize
the well-known Fröhlich Hamiltonian describing an impurity magnetopolaron confined in a 3D
parabolic QD potential. Our approach is based on a variational calculation with two successive
unitary transformations. First, by a unitary transformation of displaced-oscillator type, which
is a special combination of LLP–H canonical transformation, the relevant Fröhlich Hamiltonian
is transformed into an effective Hamiltonian whose eigenvalues are completely equivalent to the
original one, but which contains bilinear terms of phonon creation and annihilation operators
as well as linear ones [28, 29]. This type of unitary transformation has been discussed in
the literature from different points of view by many authors [30–36]. In particular, Ninno
and Iadonisi [32] have provided a rigorous theoretical framework for the calculation of the
position-dependent part of the phonon displacement arising from the relevant transformation,
which is capable of describing the dynamics of electron–phonon interaction for the whole range
of coupling constant. In the present work, to diagonalize the quadratic terms arising from this
transformation, we introduce a single-mode squeezed-state transformation [37] as a second
unitary transformation, which has been used before in the context of polaron theory [38, 39].
Finally, we have performed a variational calculation with the parameters included in the theory.

The layout of the present paper is as follows. The Fröhlich Hamiltonian describing an
electron interacting with LO-phonons and bound to a hydrogenic impurity subjected to both
a uniform magnetic field and a spatial confinement is introduced in the following section,
and a diagonalization procedure for this Hamiltonian is employed. Section 3 is devoted to
the discussion of some intermediate analytical results together with numerical ones for the
ground-state binding energy of an impurity magnetopolaron and polaronic correction to this
state. In section 4, we present our conclusions.

2. Theory

An impurity magnetopolaron in a 3D parabolic QD potential is described by the Fröhlich
Hamiltonian

H = HE +
∑

q

h̄ω0b†
qbq +

∑
q

(
Vqbqeiq·r + H.c.

)
, (1)
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where

HE = 1

2µ

(
p +

e

c
A

)2 − e2

ε0|r| +
1

2
µω2

•r2 (2)

is the Hamiltonian of the electron–impurity subsystem. In equation (1),
∣∣Vq

∣∣2 =
(h̄ω0)

2 4παr0/V q2 is the electron–phonon interaction amplitude, b†
q (bq) is the creation

(annihilation) operator of an optical phonon with a wavevector q and an energy h̄ω0, and
p and r denote the electron momentum and position operators, respectively. α and r0 are
the electron–phonon coupling constant and polaron radius, respectively. In the absence of
impurity, by choosing the symmetrical Coulomb gauge A = B(−y, x, 0)/2 for the vector
potential, equation (1) can then be written as a sum of Hamiltonians for an isotropic 3D
harmonic oscillator in the lateral plane with mass µ and frequency ω2 = (ωc/2)2 + ω2• and
a term of (ωc/2)Lz , where ωc and ω• are the cyclotron frequency and the strength of spatial
confinement, respectively.

In the first step, we carry out a unitary transformation of displaced-oscillator type:

U1 = exp

{∑
q

[
F∗

q (r)bq − Fq(r)b†
q

]}
, (3)

which diagonalizes the phonon-related part of the Hamiltonian given by equation (1). We
divide the transformed Hamiltonian into four parts as H̃ = U−1

1 HU1 = HE + H0 + H1 + H2,
each of which is given by

H0 =
∑

q

[
h̄2

2µ

∣∣∇Fq(r)
∣∣2

+ h̄ω0|Fq(r)|2 + Vq Fq(r)eiq·r + V ∗
q F∗

q (r)e−iq·r
]

,

H1 =
∑

q

h̄ω0b†
qbq +

∑
q

{[
V ∗

q e−iq·r +
h̄

iµ

(
p +

e

c
A

)
· ∇Fq(r) + h̄ω0 Fq(r)

]
b†

q + H.c.

}
,

H2 =
∑

q

∑
q′

h̄2

2µ
[2∇Fq(r) · ∇F∗

q′(r)b†
qbq′ − ∇Fq(r) · ∇Fq′(r)b†

qb†
q′

− ∇F∗
q (r) · ∇F∗

q′(r)bqbq′],

(4)

respectively, with the help of the transformation rule

U−1
1

(
p +

e

c
A

)
U1 = p +

e

c
A − ih̄

∑
q

[∇Fq(r)b†
q − ∇F∗

q (r)bq
]

+
1

2
 (r),

where

 (r) = −ih̄
∑

q

[
F∗

q (r)∇Fq(r) − Fq(r)∇F∗
q (r)

]
is the current due to the displacement of the phonon field and therefore is required to be equal
to zero [28]. At this stage, if one first constructs a trial wavefunction |�〉 = |r〉 ⊗ |0〉PH for
the ground-state energy of H̃ , where |r〉 is the electronic part of the trial wavefunction and its
coordinate representation is taken by

�(r) = γ⊥
√

γ‖
π3/4

exp[−(γ 2
⊥r2

⊥ + γ 2
‖ z2)/2], (5)

and |0〉PH is the phonon vacuum state, and then performs a minimization with respect to both
the variational parameters arising from the phonon displacement Fq(r) given by the ansatz

Fq(r) = fq exp[−i(1 − λ)q · r], (6)
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and the variational parametersγ⊥ and γ‖ included in �(r), this minimum value, as will be shown
later, yields all-coupling results. In fact, it is easy to check that the r-dependent displaced-
oscillator transformation, equation (3), together with such a choice of Fq(r), equation (6),
is completely equivalent to modified LLP transformations, i.e., to LLP–H transformations
which were originally suggested by Lee et al [40] and then modified by Huybrechts [41] to
extend this approach to all coupling strengths. As indicated in section 1, this kind of unitary
transformation has been used widely in the context of polaron theory for achieving electron–
phonon interactions in several systems such as free [34, 36], bound [28], magnetopolaron [32]
and bipolaron [33] problems as well. Thus, the same effective Hamiltonian, equation (4), could
also have been obtained by transforming equation (1) with U ′

1 = exp[−iλr · ∑
q qb†

qbq] first
and then with U ′′

1 = exp[
∑

q( f ∗
q bq − fqb†

q)], due to the fact that U1 = U ′
1U ′′

1 , as also stated by
Adamowski [29]. Therefore, equation (3) together with equation (6) yields all-coupling results,
and reduces the results obtained from weak- and strong-coupling regimes at certain values of
the variational parameter, since the variational parameter λ provides an interpolation scheme in
that it is reduced to the well-known LLP method when λ = 1 and provides a good description
in the extended state limit, whereas in the case of λ = 0, it is reduced to the Landau–Pekar
method, which is an approach in the adiabatic case and is valid in the strong-coupling limit.

In the next step, in order to obtain more accurate results beyond those obtained by the
LLP–H variational approach, it is necessary to include the effects of the non-diagonal terms of
equation (4). This can be achieved by introducing the following single-mode squeezed-state
transformation:

U2 = exp

{
1
2

∑
q

Gq
[
(b†

q)
2 − (bq)

2
]}

, (7)

which is suitable for the diagonalization of the quadratic phonon terms [37] in H2. Furthermore,
it can be easily seen that, under U2 given by equation (7), the phonon annihilation and
creation operators are transformed according to the rules U−1

2 bqU2 = bq cosh Gq + b†
q sinh Gq

and U−1
2 b†

qU2 = b†
q cosh Gq + bq sinh Gq, respectively, which are in fact the well-known

Bogoliubov canonical transformations. Hence, the transformed forms of H1 and H2 are
straightforward, and the non-vanishing contribution to H0 is found to be

H̃2 =
∑

q

{[
h̄ω0 +

h̄2

µ

∣∣∇Fq(r)
∣∣2

]
sinh2 Gq − h̄2

2µ
[∇Fq(r) · ∇Fq(r)

+ ∇F∗
q (r) · ∇F∗

q (r)] sinh Gq cosh Gq

}
. (8)

After inserting equation (6) into H0 in equation (4), and into equation (8), and performing
some straightforward calculations, the final result for the total variational energy, including
the electronic part, is found to be

E =
(

h̄2

2µ
γ 2

⊥ +
1

2
µω2 1

γ 2
⊥

)
+

1

2

(
h̄2

2µ
γ 2

‖ +
1

2
µω2

•
1

γ 2
‖

)
− e2

2π2ε0

∫
d3k
k2

σ(k)

+
∑

q

[(
h̄ω0 +

h̄2q2

2µ
(1 − λ)2

) ∣∣ fq

∣∣2
+ Vq fqσ(λq) + V ∗

q f ∗
q σ(λq)

]

+
∑

q

{(
h̄ω0 +

h̄2q2

µ
(1 − λ)2

∣∣ fq
∣∣2

)
sinh2 Gq

+
h̄2q2

2µ
(1 − λ)2σ(2 (1 − λ) q)

(
f 2
q + f ∗2

q

)
sinh Gq cosh Gq

}
, (9)
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where σ (λq) = 〈exp(iλq · r)〉, and 〈· · ·〉 denotes the expectation value with respect to
electronic coordinates. In equation (9), we have used the identity |r|−1 = ∫

d3keik·r/2π2k2.
Equation (9) can be rewritten in dimensionless form by simply dividing both sides by
h̄ω0 and defining new dimensionless variational parameters (h̄/µω0)

1/2γ⊥ = 1/γ ⊥ and
(h̄/µω0)

1/2γ‖ = 1/γ ‖ together with the functions

Hq = 1 + 2r2
0 q2(1 − λ)2

∣∣ fq
∣∣2

,

Jq = r2
0 q2(1 − λ)2σ(2 (1 − λ) q)

(
f 2
q + f ∗2

q

)
.

(10)

Hence, we obtain

E =
(

1

2γ 2
⊥

+
1

2
ω2γ 2

⊥

)
+

1

2

(
1

2γ 2
‖

+
1

2
ω2

•γ
2
‖

)
− 2

π
β

γ ‖
γ 2

⊥
I(γ ⊥, γ ‖)

+
∑

q

{[1 + r2
0 q2(1 − λ)2]| fq|2 + V q fqσ(λq) + V

∗
q f ∗

q σ(λq)

+ Hq sinh2 Gq + Jq sinh Gq cosh Gq}, (11)

where β = e2/ε0h̄ω0r0 and V q = Vq/h̄ω0 are the binding energy parameter and the
dimensionless electron–phonon interaction amplitude, respectively, and the integral I(γ ⊥, γ ‖)
has the following form:

I(γ ‖/γ ⊥) =
∫ ∞

0
xe−x2/2 dx

∫ ∞

0
e−y2/2 dy(

γ ‖/γ ⊥
)2

x2 + y2
.

In these units, the cyclotron frequency ωc, the confinement frequency ω• and the associated
confinement length �• = (h̄/µω•)1/2 all become dimensionless, and they can be expressed in
terms of the LO-phonon frequency ω0 and polaron radius r0 = (h̄/2µω0)

1/2 in such a way
that ωc = ωc/ω0, ω• = ω•/ω0 and �• = �•/r0 = (2/ω•)1/2. By making use of equation (5),
σ (λq) in equations (9)–(11) can easily be calculated in terms of hypergeometric functions
as σ (λq) = 1 F1(1, 1; −λ2q2

⊥γ 2
⊥/2)1 F 1(1, 1; −λ2q2

‖γ
2
‖/2). Therefore, the minimization of

equation (11) with respect to fq and Gq yields two-coupled equations:

fq = V
∗
q

1 + r2
0 q2(1 − λ)2�(q, λ; Gq)

1 F1(1, 1; −λ2q2
⊥γ 2

⊥/2)1 F1(1, 1; −λ2q2
‖γ

2
‖/2), (12a)

Gq = 1
2 tanh−1 Jq/Hq, (12b)

respectively, with the solutions to equation (12b)

sinh 2Gq = ± Jq√
H2

q − J 2
q

cosh 2Gq = ± Hq√
H2

q − J 2
q

, (13)

where the minus sign leads to exchanging the physical properties of b†
q and bq; only the plus

sign solutions are taken into account for the minimization [37]. In equation (12a), we have
introduced the abbreviation �(q, λ; Gq) = cosh 2Gq − σ (2λq) sinh 2Gq. To find an explicit
expression for fq we follow the continued fraction (CF) technique. First, we use equation (13)
in equation (12a) to obtain the CF representation for fq and repeat this procedure until we get
a result which does not change with further iteration.

3. Results and discussion

Here, before starting to discuss the numerical results, we comment on a particular form of
equation (11), i.e., in the limit of vanishing Gq. This is the case that �(q, λ; 0) = 1. In the
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absence of magnetic field, one takes γ ⊥ = γ ‖ = γ due to restoring the spherical symmetry
of the problem, and therefore one can easily see that, by substituting equation (12a) into
equation (11), the total variational energy expression becomes

E = 3

2

(
1

2γ 2 +
1

2
ω2

•γ
2

)
− 2

π

β

γ
I(1) −

∑
q

∣∣V q
∣∣2

σ 2 (λq)

1 + r2
0 q2(1 − λ)2

. (14)

As usual, by converting the sum in equation (14) into an integral over q and using the result
for I(1) = √

π/2 together with the help of the integral [42]∫ ∞

0

e−µ2 x2

x2 + η2
dx = π

2β
[1 − �(βη)] eµ2η2

,

where �(x) = (2/
√

π)
∫ x

0 exp(t2) dt is the probability integral, equation (14) becomes

E = 3

2

(
1

2γ 2 +
1

2
ω2

•γ
2

)
−

√
2

π

β

γ
− α

1 − λ
exp

[
λ2γ 2

(1 − λ)2

]
erfc

(
λγ

1 − λ

)
, (15)

in which erfc(x) is the complementary error function. It can be easily seen that equation (15),
in the absence of impurity, reduces to the previously obtained result in the article by Sahoo [34],
provided that one takes the variational parameters as λ and 1−a instead of γ and λ, respectively,
and uses the confinement length as � = 1/

√
2λ in Fröhlich units. One can also check that the

asymptotic limits of equation (15) yield

E = 3

2

(
1

2γ 2 +
1

2
ω2

•γ
2

)
−

√
2

π

β

γ
−

{
α/

√
πγ for λ = 1,

α for λ = 0,
(16)

which are completely equivalent to the results of strong- and weak-coupling regimes,
respectively. In the former case, i.e., λ = 1, minimization with respect to γ yields a fourth-
order equation

ω2
•γ

4 +
2(

√
2β + α)

3
√

π
γ − 1 = 0,

which can be solved analytically as is done in [27]. However, instead of discussing its analytical
solutions, we will present its asymptotic solutions to provide insight about the qualitative
behaviour of the ground-state energy of an impurity magnetopolaron in a 3D parabolic QD
potential. First, in the case of strong electron–phonon interaction and weak spatial confinement,
one gets the solution γ = 3

√
π/2(

√
2β + α), and hence on replacing this result back into

equation (16) this yields the energy

E = 27

16

ω2
•

(
√

2β + α)2
− (

√
2β + α)2

3π
,

which reduces to the well-known strong coupling result −α2/3π in the absence of impurity
and spatial confinement. Second, in the case of a strong spatial confinement but weak electron–
phonon coupling and binding parameter, one obtains the solution γ 2 = 1/ω•, which gives rise
to the energy

E = 3

2
ω• −

√
ω

π
(
√

2β + α), (17)

which is the sum of the ground-state energy of a 3D isotropic oscillator with frequency ω•
and the contributions from impurity and electron–phonon interaction in the weak coupling
regime. Due to the fact that, setting λ = 0, minimization of equation (16) yields again a
fourth-order equation in γ , one can easily see that, in the case of a strong spatial confinement
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Figure 1. Binding energy of an impurity magnetopolaron as a function of confinement length
�• = �/r0 = √

2/ω for various values of magnetic field and electron–phonon coupling strength at
β = 1. While the dashed curves represent the results of the all-coupling approach, the squeezing
effect on the binding energy is denoted by the solid curves. The three dotted curves at the bottom
refer to the unperturbed impurity binding energy, i.e., in the absence of electron–phonon interaction.

but a weak binding parameter, equation (16) exhibits a minimum when γ 2 = 1/ω•, leading to
equation (17) again.

It is obvious from these results that equation (11) together with equations (12a) and (12b)
not only provides the results for the ground-state binding energy of an impurity magnetopolaron
in a 3D parabolic QD valid in the whole range of electron–phonon coupling strengths, but also
improves them. To reveal this, we have plotted the ground-state binding energy of an impurity
magnetopolaron ĒB = Ē(α, β; ω) − Ē(0, 0; ω) and the polaronic correction to the ground-
state energy �Ē = Ē(α, β; ω) − Ē(0, β; ω), in figures 1 and 2 respectively.

In figure 1, we have presented a comparison of both the magnetic field and size dependence
of the binding energy that have been obtained within the squeezed-state approach with all-
coupling results. It can be clearly seen from the figure that (i) switching the electron–phonon
interaction on leads to the enhancement of the binding energy of the impurity, (ii) application of
a uniform magnetic field yields a further increase in the binding energy and (iii) as the strength
of the electron–phonon interaction, α, increases, the corrections to the binding energy due to
the squeezing become quite large as compared to those obtained in the all-coupling approach.
Another important feature revealed in the figure is the fact that the introduction of a magnetic
field enhances this correction. Furthermore, squeezing effects are enhanced by decreasing the
size of the QD, i.e., by increasing the strength of spatial confinement.

In figure 2, we have plotted the polaronic correction to the ground-state energy of an
impurity in a parabolic QD as a function of the confinement length for β = 1 and 3. From
the figure, we see that the polaronic correction is more pronounced for β = 3 than for β = 1,
and that it is increased with decreasing the size of the QD. The inset shows the dependence of
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Figure 2. Polaronic correction to the ground-state of an impurity as a function of confinement
length �• for ωc = 0. The dashed and solid curves refer to β = 1 and 3, respectively.

the polaronic correction on α, and reveals the effect of quantum confinement on the polaronic
correction to the ground-state of an impurity for different values of β.

Finally, for β = 1, to illustrate how the computed variational parameters λ, γ ⊥ and γ ‖
change with both spatial confinement length and magnetic field, and in particular to clarify
how λ plays a crucial role in the interpolation between two different regimes, we present
the dependences of these parameters on the confinement length for three different values of
magnetic field at α = 4, in figure 3. For comparison, the results for α = 2 are also displayed
in the inset. From the figure and the inset, one can draw the following qualitative conclusions.
First, for the zero magnetic field the two variational parameters γ ⊥ and γ ‖ coincide, and
they both exhibit a tendency to decrease with decreasing the confinement length �•, i.e., with
increasing the strength of spatial confinement,even in the presence of a magnetic field. Second,
while the introduction of a magnetic field (ωc = 1) leads to the two curves for γ ⊥ and γ ‖
splitting significantly at larger values of confinement length, for a stronger magnetic field
(ωc = 3), however, they are positioned much closer to each other. We also note that, since
λ = 0 at the spatial region defined by (�• > 2) for ωc � 1 at α = 2 and (�• > 2.2) for
ωc � 1 at α = 4, the intermediate coupling theory is valid, while outside these regions the
all-coupling variational approach is needed due to the nonzero λ. Finally, as the strength
of confinement increases with decreasing confinement length, quantum size effects become
important, leading to abrupt changes in all curves because increasing the strength of quantum
confinement strengthens the electron–phonon interaction. In other words, the curves for γ ⊥
and γ ‖ for ωc � 1 show a steplike decrease, while λ exhibits a steplike increase for ωc � 1
around �• ∼ 2, indicating again the need for the use of the all-coupling variational approach
for QDs whose sizes are of the order of the radius of a few polarons. Furthermore, at small �•,
for which quantum size effects are more significant, the curves for γ ⊥ and γ ‖ for every value

of magnetic field fall roughly as 1/ω or �•/
√

2.
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Figure 3. The variational parameters λ, γ ⊥ and γ ‖ that are determined by requiring equation (11)
to be a minimum as a function of the confinement length for three different values of magnetic field
for β = 1 and α = 4. The inset shows the case for β = 1 and α = 2.

4. Conclusion

In accordance with the purposes of the paper, which were (i) to obtain the ground-state energy
of an impurity magnetopolaron in a 3D parabolic QD and hence polaronic contributions
to this energy, within the framework of all-coupling regime, and (ii) to improve them, we
have introduced a different unitary transformation scheme to diagonalize the relevant Fröhlich
Hamiltonian. Since the first transformation employed here allows one to analyse both the size
and the magnetic field dependence of the impurity magnetopolaron binding energy, it gives
rise to terms that are proportional to the bilinear forms of the phonon creation and annihilation
operators as well as the linear ones. Besides achieving an all-coupling approximation scheme
for an impurity magnetopolaron in a 3D parabolic QD, we have analysed the effects of these
quadratic terms on the impurity binding energy by introducing a single-mode squeezed state
transformation. Our results show that the corrections to the binding energy due to the inclusion
of such terms strongly depend on the size of the QD and the strength of the magnetic field. We
have concluded that these terms give rise to a considerable increase in the binding energy with
increasing both the strength of magnetic field and the spatial confinement length, and thus they
should be taken into account in analysing the polaronic effects in QDs whose size are of the
order of the radius of a few polarons.

We have considered the effects of the interaction of an electron with bulk-type LO-phonons
on the binding energy of a hydrogen-like impurity placed symmetrically on the centre of a 3D
parabolic QD by introducing a single-mode squeezed state transformation in addition to the
usual LLP–H transformations, and have not taken into account the effects of interaction with
surface optical-type (SO) phonons and deviation of the impurity from the dot centre. However,
it has been very recently shown that
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(i) for any value of coupling and for small binding strength the total electron–phonon
interaction energy depends weakly on the impurity position and has a maximum when
the impurity is at the centre of the dot, and that this maximum shifts inside the dot as the
binding strength increases [35], and

(ii) the effects of the electron–LO phonon interaction are more significant than that the effects
of the electron–SO phonon interaction in small QDs [12], but the contribution of the SO
phonon to the impurity binding energy increases as the impurity shifts away from the
centre while that of the LO phonon decreases in large QDs [11].

Since such effects, as is well-known, may become important, depending on both the size of
the QD and material parameters, further investigations of these points should be made within
the framework of our approach.
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